Skip to content

Using Vizro-AI methods as LangChain tools

You can use Vizro-AI's functionality within a larger LangChain application. This guide shows how to integrate Vizro-AI's chart and dashboard generation capabilities as LangChain tools. Here are the steps you need to take:

  1. Set up the environment
  2. Define LangChain tools
  3. Set up the tool chain
  4. Use the chain

1. Set up the environment

First, import the required libraries and prepare the LLM:

from copy import deepcopy
from typing import Annotated, Any

import pandas as pd
import vizro.plotly.express as px
from langchain_core.runnables import chain
from langchain_core.tools import InjectedToolArg, tool
from langchain_openai import ChatOpenAI
from vizro_ai import VizroAI

llm = ChatOpenAI(model="gpt-4")

2. Define LangChain tools

Basic tools only take string as input and output. Vizro-AI takes Pandas DataFrames as input and it's neither cost-efficient nor secure to pass the full data to a LLM. The recommended approach is to exclude DataFrame parameters from the tool's schema and instead bind them at runtime using LangChain's runtime binding feature.

Now, create tools that wrap Vizro-AI's plotting and dashboard generation capabilities:

@tool(parse_docstring=True)
def get_plot_code(df: Annotated[Any, InjectedToolArg], question: str) -> str:
    """Generate only the plot code.

    Args:
        df: A pandas DataFrame
        question: The plotting question

    Returns:
        Generated plot code
    """
    vizro_ai = VizroAI(model=llm)
    plot_elements = vizro_ai.plot(
        df,
        user_input=question,
        return_elements=True,
    )
    return plot_elements.code_vizro

@tool(parse_docstring=True)
def get_dashboard_code(dfs: Annotated[Any, InjectedToolArg], question: str) -> str:
    """Generate the dashboard code.

    Args:
        dfs: Pandas DataFrames
        question: The dashboard question

    Returns:
        Generated dashboard code
    """
    vizro_ai = VizroAI(model=llm)
    dashboard_elements = vizro_ai.dashboard(
        dfs,
        user_input=question,
        return_elements=True,
    )
    return dashboard_elements.code

3. Set up the tool chain

Create a chain that handles tool execution and data injection:

# Bind tools to the LLM
tools = [get_plot_code, get_dashboard_code]
llm_with_tools = llm.bind_tools(tools)

# Create data injection chain
@chain
def inject_df(ai_msg):
    tool_calls = []
    for tool_call in ai_msg.tool_calls:
        tool_call_copy = deepcopy(tool_call)

        if tool_call_copy["name"] == "get_dashboard_code":
            tool_call_copy["args"]["dfs"] = dfs
        else:
            tool_call_copy["args"]["df"] = df

        tool_calls.append(tool_call_copy)
    return tool_calls

# Create tool router
tool_map = {tool.name: tool for tool in tools}

@chain
def tool_router(tool_call):
    return tool_map[tool_call["name"]]

# Combine chains
chain = llm_with_tools | inject_df | tool_router.map()

4. Use the chain

Now you can use the chain to generate charts or dashboards based on natural language queries. The chain will generate code that you can use to create visualizations.

Generate chart code

# Load sample data
df = px.data.gapminder()

plot_response = chain.invoke("Plot GDP per capita for each continent")
print(plot_response[0].content)
import plotly.graph_objects as go
from vizro.models.types import capture

@capture("graph")
def custom_chart(data_frame):
    continent_gdp = data_frame.groupby("continent")["gdpPercap"].mean().reset_index()
    fig = go.Figure(
        data=[go.Bar(x=continent_gdp["continent"], y=continent_gdp["gdpPercap"])]
    )
    fig.update_layout(
        title="GDP per Capita by Continent",
        xaxis_title="Continent",
        yaxis_title="GDP per Capita",
    )
    return fig

Generate dashboard code

dfs = [px.data.gapminder()]

dashboard_response = chain.invoke("Create a dashboard. This dashboard has a chart showing the correlation between gdpPercap and lifeExp.")
print(dashboard_response[0].content)
############ Imports ##############
import vizro.models as vm
from vizro.models.types import capture
import plotly.graph_objects as go


####### Function definitions ######
@capture("graph")
def gdp_life_exp_graph(data_frame):
    fig = go.Figure()
    fig.add_trace(
        go.Scatter(x=data_frame["gdpPercap"], y=data_frame["lifeExp"], mode="markers")
    )
    fig.update_layout(
        title="GDP per Capita vs Life Expectancy",
        xaxis_title="GDP per Capita",
        yaxis_title="Life Expectancy",
    )
    return fig


####### Data Manager Settings #####
#######!!! UNCOMMENT BELOW !!!#####
# from vizro.managers import data_manager
# data_manager["gdp_life_exp"] = ===> Fill in here <===


########### Model code ############
model = vm.Dashboard(
    pages=[
        vm.Page(
            components=[
                vm.Graph(
                    id="gdp_life_exp_graph",
                    figure=gdp_life_exp_graph(data_frame="gdp_life_exp"),
                )
            ],
            title="GDP vs Life Expectancy Correlation",
            layout=vm.Layout(grid=[[0]]),
            controls=[],
        )
    ],
    title="GDP per Capita vs Life Expectancy",
)