Skip to content

How to create a dashboard

This guide shows you how to configure and call a Dashboard using either pydantic models, Python dictionaries, YAML, or JSON.

To create a dashboard:

  1. Choose one of the possible configuration syntaxes
  2. Create your pages, see our guide on Pages
  3. (optional) Choose a theme, see our guide on Themes
  4. (optional) Customize your navigation, see our guide on Navigation
  5. (optional) Set a title for your dashboard
  6. Add your dashboard to the build call of Vizro

Use dashboard configuration options

Dashboard Configuration Syntaxes

import vizro.plotly.express as px
from vizro import Vizro
import vizro.models as vm

df = px.data.iris()

page = vm.Page(
    title="My first dashboard",
    components=[
        vm.Graph(figure=px.scatter(df, x="sepal_length", y="petal_width", color="species")),
        vm.Graph(figure=px.histogram(df, x="sepal_width", color="species")),            ],
    controls=[
        vm.Filter(column="species"),
    ],
)

dashboard = vm.Dashboard(pages=[page])

Vizro().build(dashboard).run()

Run and edit this code in Py.Cafe

import vizro.plotly.express as px
from vizro import Vizro

df = px.data.iris()

page = {
    "title": "My first dashboard",
    "components": [
        {
            "type": "graph",
            "figure": px.scatter(
                df,
                x="sepal_length",
                y="petal_width",
                color="species",
            ),
        },
        {
            "type": "graph",
            "figure": px.histogram(
                df,
                x="sepal_width",
                color="species"
            ),
        },
    ],
    "controls": [
        {
            "type": "filter",
            "column": "species",
        },
    ],
}

dashboard = {"pages": [page]}

Vizro().build(dashboard).run()
# Still requires a .py to add data to the data manager and parse YAML configuration
# See yaml_version example
pages:
  - components:
      - figure:
          _target_: scatter
          data_frame: iris
          x: sepal_length
          y: petal_width
          color: species
        type: graph
      - figure:
          _target_: histogram
          data_frame: iris
          x: sepal_width
          color: species
        type: graph
    controls:
      - column: species
        type: filter
    title: My first dashboard
{
    "pages": [
        {
            "components": [
                {
                    "figure": {
                        "_target_": "scatter",
                        "color": "species",
                        "data_frame": "iris",
                        "x": "sepal_length",
                        "y": "petal_width"
                    },
                    "type": "graph"
                },
                {
                    "figure": {
                        "_target_": "histogram",
                        "color": "species",
                        "data_frame": "iris",
                        "x": "sepal_width",
                    },
                    "type": "graph"
                }
            ],
            "controls": [
                {
                    "column": "species",
                    "type": "filter"
                }
            ],
            "title": "My first dashboard"
        }
    ]
}

Dashboard

Extra .py files for yaml and json required

Note that in the yaml and json example an extra .py is required to register the data and parse the yaml/json configuration.

from pathlib import Path

import yaml

import vizro.plotly.express as px
from vizro import Vizro
from vizro.managers import data_manager
from vizro.models import Dashboard

data_manager["iris"] = px.data.iris()
dashboard = yaml.safe_load(Path("dashboard.yaml").read_text(encoding="utf-8"))
dashboard = Dashboard(**dashboard)

Vizro().build(dashboard).run()
import json
from pathlib import Path

import vizro.plotly.express as px
from vizro import Vizro
from vizro.managers import data_manager
from vizro.models import Dashboard

data_manager["iris"] = px.data.iris()
dashboard = json.loads(Path("dashboard.json").read_text(encoding="utf-8"))
dashboard = Dashboard(**dashboard)

Vizro().build(dashboard).run()

After running the dashboard, you can access the dashboard via localhost:8050.

Add a dashboard title

If supplied, the title of the Dashboard displays a heading at the top of every page.

Vizro will automatically incorporate the dashboard logo in the top-left corner of each page if an image named logo.<extension> is present within the assets folder.

Dashboard with logo

Browser title

The website icon, Dashboard title (if supplied) and Page title are displayed in the browser's title bar. For example, if your Dashboard title is "Vizro Demo" and the Page title is "Homepage", then the title in the browser tab will be "Vizro Demo: Homepage".

Meta tags for social media

Vizro automatically adds meta tags to display a preview card when your app is shared on social media and chat clients. The preview includes the URL, title, plus an image and Page description (if supplied). To see an example, try sharing an example from the Vizro examples gallery.